Tissue Identification in Ultrasound Images using Rayleigh Local Parameter Estimation

Santiago Aja-Fernández, Marcos Martin-Fernández and Carlos Alberola-López

Laboratorio de Procesado de Imagen

Universidad de Valladolid Spain

Index

- Introduction
 - Speckle
 - Models for Speckle
 - Aim of the work
- 2 Local Statistics of the Rayleigh distribution
 - The Rayleigh distribution
 - Parameter estimation
- Tissue Identification in Ultrasound Images
 - Initial assumptions
 - Algorithm
- 4 Experiments
 - Synthetic Experiments
 - Experiments with Ultrasound Images
- Conclusions

Introduction

- Introduction
 - Speckle
 - Models for Speckle
 - Aim of the work
- 2 Local Statistics of the Rayleigh distribution
 - The Rayleigh distribution
 - Parameter estimation
- Tissue Identification in Ultrasound Images
 - Initial assumptions
 - Algorithm
- 4 Experiments
 - Synthetic Experiments
 - Experiments with Ultrasound Images
- Conclusions

Speckle

- Speckle is a kind of granular noise,
- Found in many types of coherent imaging systems: SAR, laser illuminated or ultrasound.

$$Z = Xe^{i\phi} = \sum_{n=1}^{N} x_i e^{i\phi_i}$$

Speckle

- Speckle is a kind of granular noise,
- Found in many types of coherent imaging systems: SAR, laser illuminated or ultrasound.

$$Z = Xe^{j\phi} = \sum_{n=1}^{N} x_i e^{j\phi_i}$$

Speckle

- Speckle is a kind of granular noise,
- Found in many types of coherent imaging systems: SAR, laser illuminated or ultrasound.

$$Z = Xe^{j\phi} = \sum_{n=1}^{N} x_i e^{j\phi}$$

Speckle

- Speckle is a kind of granular noise,
- Found in many types of coherent imaging systems: SAR, laser illuminated or ultrasound.

$$Z = Xe^{j\phi} = \sum_{n=1}^{N} x_i e^{j\phi_i}$$

Statistical models

 Rayleigh: phases are random and independent of the amplitudes, number of scatters large, no periodicity in disposition of the scatters.

$$p(X) = \frac{X}{\sigma^2} e^{-\frac{X^2}{2\sigma^2}} u(X)$$

- 2 Rician distribution (specular component Z_s added).
- K distribution
- 4 Homodyned K distribution.
- Others: Nakagami model, Rician inverse Gaussian and Nakagami inverse Gaussian.

Statistical models

• Rayleigh: phases are random and independent of the amplitudes, number of scatters large, no periodicity in disposition of the scatters.

$$p(X) = \frac{X}{\sigma^2} e^{-\frac{X^2}{2\sigma^2}} u(X)$$

- 2 Rician distribution (specular component Z_s added).
- K distribution
- 4 Homodyned K distribution.
- Others: Nakagami model, Rician inverse Gaussian and Nakagami inverse Gaussian.

Statistical models

• Rayleigh: phases are random and independent of the amplitudes, number of scatters large, no periodicity in disposition of the scatters.

$$p(X) = \frac{X}{\sigma^2} e^{-\frac{X^2}{2\sigma^2}} u(X)$$

- 2 Rician distribution (specular component Z_s added).
- K distribution
- Homodyned K distribution.
- Others: Nakagami model, Rician inverse Gaussian and Nakagami inverse Gaussian.

Statistical models

• Rayleigh: phases are random and independent of the amplitudes, number of scatters large, no periodicity in disposition of the scatters.

$$p(X) = \frac{X}{\sigma^2} e^{-\frac{X^2}{2\sigma^2}} u(X)$$

- 2 Rician distribution (specular component Z_s added).
- K distribution
- 4 Homodyned K distribution.
- Others: Nakagami model, Rician inverse Gaussian and Nakagami inverse Gaussian.

Statistical models

• Rayleigh: phases are random and independent of the amplitudes, number of scatters large, no periodicity in disposition of the scatters.

$$p(X) = \frac{X}{\sigma^2} e^{-\frac{X^2}{2\sigma^2}} u(X)$$

- 2 Rician distribution (specular component Z_s added).
- K distribution
- Homodyned K distribution.
- Others: Nakagami model, Rician inverse Gaussian and Nakagami inverse Gaussian.

Statistical models

• Rayleigh: phases are random and independent of the amplitudes, number of scatters large, no periodicity in disposition of the scatters.

$$p(X) = \frac{X}{\sigma^2} e^{-\frac{X^2}{2\sigma^2}} u(X)$$

- 2 Rician distribution (specular component Z_s added).
- K distribution
- Homodyned K distribution.
- Others: Nakagami model, Rician inverse Gaussian and Nakagami inverse Gaussian.

Statistical models

• Rayleigh: phases are random and independent of the amplitudes, number of scatters large, no periodicity in disposition of the scatters.

$$p(X) = \frac{X}{\sigma^2} e^{-\frac{X^2}{2\sigma^2}} u(X)$$

- 2 Rician distribution (specular component Z_s added).
- K distribution
- 4 Homodyned K distribution.
- Others: Nakagami model, Rician inverse Gaussian and Nakagami inverse Gaussian.
 - -Logarithmic compression no considered-

Aim of this work

Assumption

- Rayleigh distribution of the speckle.
- Uniform value of σ for each tissue; different values for different tissues.

Aim

- Estimation of σ in each tissue.
- Classification of pixels according to $\hat{\sigma}$.

Tools

Local Statistics

Aim of this work

Assumption

- Rayleigh distribution of the speckle.
- Uniform value of σ for each tissue; different values for different tissues.

Aim

- Estimation of σ in each tissue.
- Classification of pixels according to $\hat{\sigma}$.

Tools

Local Statistics

Aim of this work

Assumption

- Rayleigh distribution of the speckle.
- Uniform value of σ for each tissue; different values for different tissues.

Aim

- Estimation of σ in each tissue.
- Classification of pixels according to $\hat{\sigma}$.

Tools

Local Statistics

Local Statistics of the Rayleigh distribution

- Introduction
 - Speckle
 - Models for Speckle
 - Aim of the work
- 2 Local Statistics of the Rayleigh distribution
 - The Rayleigh distribution
 - Parameter estimation
- Tissue Identification in Ultrasound Images
 - Initial assumptions
 - Algorithm
- 4 Experiments
 - Synthetic Experiments
 - Experiments with Ultrasound Images
 - 5 Conclusions

The Rayleigh distribution

PDF

$$p(x|\sigma) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}} u(x)$$

Moments and parameters

Mean: $E\{x\} = \sigma\sqrt{\frac{\pi}{2}}$

Median: median $\{x\} = \sigma \sqrt{\log(4)}$

Mode: mode{x} = σ riance: Var{x} = $\sigma^2 \frac{4-\pi}{2}$

Second order moment: $E\{x^2\} = 2\sigma^2$

The Rayleigh distribution

PDF

$$p(x|\sigma) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}} u(x)$$

Moments and parameters

Mean: $E\{x\} = \sigma\sqrt{\frac{\pi}{2}}$

Median: median $\{x\} = \sigma \sqrt{\log(4)}$

Mode: mode $\{x\} = \sigma$ Variance: Var $\{x\} = \sigma^2 \frac{4-\pi}{2}$

Second order moment: $E\{x^2\} = 2\sigma^2$

The Rayleigh distribution

PDF

$$p(x|\sigma) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}} u(x)$$

Moments and parameters

Mean: $E\{x\} = \sigma\sqrt{\frac{\pi}{2}}$

Median: median $\{x\} = \sigma \sqrt{\log(4)}$

Mode: mode $\{x\} = \sigma$ Variance: Var $\{x\} = \sigma^2 \frac{4-\pi}{2}$

Second order moment: $E\{x^2\} = 2\sigma^2$

Parameter estimation

Being $R_i(\sigma^2)$, $i = \{1, \dots, N\}$ a set of random variables with Rayleigh distribution

Maximum Likelihood (ML) estimator

$$\widehat{\sigma^2}_{ML} = \frac{1}{2N} \sum_{i=1}^{N} R_i^2 = \frac{1}{2} \langle R_i^2 \rangle$$

Unbiased estimator

$$\widehat{\sigma}_{c} = \sqrt{\frac{2}{\pi}} \frac{1}{N} \sum_{i=1}^{N} R_{i} = \sqrt{\frac{2}{\pi}} \langle R_{i} \rangle$$

Parameter estimation (2)

ML estimator distribution

- Mean: $E\{\widehat{\sigma^2}_{ML}\} = \alpha\beta = 2\sigma^2$
- Mode: mode $\{\widehat{\sigma^2}_{ML}\} = (\alpha 1)\beta = \frac{N-1}{N}2\sigma^2$
- Variance: $Var\{\widehat{\sigma^2}_{ML}\} = \alpha \beta^2 = \frac{4\sigma^4}{N}$

Unbiased estimator distribution

- Mean: $E\{\widehat{\sigma}_c\} = \sigma\sqrt{\frac{\pi}{2}}$
- Mode: mode $\{\widehat{\sigma}_c\} \approx \sigma_n \sqrt{\frac{2(2N-1)N}{e}} \approx \sigma_n N \sqrt{\frac{\pi}{2}}$
- Variance: $Var\{\widehat{\sigma}_c\} = \frac{1}{N}Var\{R(\sigma)\} = \frac{1}{N}\sigma^2\frac{4-\pi}{2}$

Parameter estimation (2)

ML estimator distribution

- Mean: $E\{\widehat{\sigma^2}_{ML}\} = \alpha\beta = 2\sigma^2$
- Mode: mode $\{\widehat{\sigma^2}_{ML}\} = (\alpha 1)\beta = \frac{N-1}{N}2\sigma^2$
- Variance: $Var\{\widehat{\sigma^2}_{ML}\} = \alpha \beta^2 = \frac{4\sigma^4}{N}$

Unbiased estimator distribution

- Mean: $E\{\widehat{\sigma}_c\} = \sigma\sqrt{\frac{\pi}{2}}$
- Mode: mode $\{\widehat{\sigma}_c\} \approx \sigma_n \sqrt{\frac{2(2N-1)N}{e}} \approx \sigma_n N \sqrt{\frac{\pi}{2}}$
- Variance: $Var\{\widehat{\sigma}_c\} = \frac{1}{N}Var\{R(\sigma)\} = \frac{1}{N}\sigma^2\frac{4-\pi}{2}$

If N >> mean and the mode are approximately equal.

Tissue Identification in Ultrasound Images

- Introduction
 - Speckle
 - Models for Speckle
 - Aim of the work
- 2 Local Statistics of the Rayleigh distribution
 - The Rayleigh distribution
 - Parameter estimation
- Tissue Identification in Ultrasound Images
 - Initial assumptions
 - Algorithm
- Experiments
 - Synthetic Experiments
 - Experiments with Ultrasound Images
- 5 Conclusions

Algorithm: about the image

- Assuming a Rayleigh model for the speckle
- Image model: $\sigma_{ij}^2 = f_{ij}^2 \sigma_n^2$
- Value of σ related to the characteristics of the biological tissue.
- Assumption: each scanned tissue uniform response: similar σ_{ij} for each tissue, and different for different tissues.

Local estimation of sigma allows the identification of different regions belonging to different types of tissues

Algorithm: about the image

- Assuming a Rayleigh model for the speckle
- Image model: $\sigma_{ij}^2 = f_{ij}^2 \sigma_n^2$
- Value of σ related to the characteristics of the biological tissue.
- Assumption: each scanned tissue uniform response: similar σ_{ij} for each tissue, and different for different tissues.

Local estimation of sigma allows the identification of different regions belonging to different types of tissues.

- Original image estimation using local estimation and assuming Rayleigh distribution.
- Classifying the pixels in tissues
 - Defining the number of classes (tissues)
 - Simple classification algorithm: K-means.

- Original image estimation using local estimation and assuming Rayleigh distribution.
- Classifying the pixels in tissues

- Original image estimation using local estimation and assuming Rayleigh distribution.
- Classifying the pixels in tissues
 - Defining the number of classes (tissues)
 - Simple classification algorithm: K-means.

- Original image estimation using local estimation and assuming Rayleigh distribution.
- Classifying the pixels in tissues
 - Defining the number of classes (tissues).
 - Simple classification algorithm: K-means.

- Original image estimation using local estimation and assuming Rayleigh distribution.
- Classifying the pixels in tissues
 - Defining the number of classes (tissues).
 - Simple classification algorithm: K-means.

Algorithm: image estimators

Mean

$$\emph{I}_{\hat{\sigma}_{ij}} = \sqrt{rac{2}{\pi}} rac{1}{|\eta_{i,j}|} \sum_{\emph{p} \in \eta_{i,j}} \emph{I}_{\emph{p}}$$

Squared Mean (ML)

$$I_{\hat{\sigma}_{ij}} = \sqrt{rac{1}{2|\eta_{i,j}|}\sum_{p\in\eta_{i,j}}I_p^2}$$

Median

$$I_{\hat{\sigma}_{ij}} = \sqrt{rac{1}{\log(4)}} \underset{
ho \in \eta_{i,j}}{\mathsf{median}} \{I_{
ho}\}$$

Algorithm: image estimators

Mean

$$\emph{I}_{\hat{\sigma}_{ij}} = \sqrt{rac{2}{\pi}} rac{1}{|\eta_{i,j}|} \sum_{\emph{p} \in \eta_{i,j}} \emph{I}_{\emph{p}}$$

Squared Mean (ML)

$$I_{\hat{\sigma}_{ij}} = \sqrt{rac{1}{2|\eta_{i,j}|}\sum_{p \in \eta_{i,j}}I_p^2}$$

Median

$$I_{\hat{\sigma}_{ij}} = \sqrt{rac{1}{\log(4)}} \underset{p \in \eta_{i,j}}{\mathsf{median}} \{I_p\}$$

Algorithm: example

Experiments

- Introduction
 - Speckle
 - Models for Speckle
 - Aim of the work
- 2 Local Statistics of the Rayleigh distribution
 - The Rayleigh distribution
 - Parameter estimation
- Tissue Identification in Ultrasound Images
 - Initial assumptions
 - Algorithm
- Experiments
 - Synthetic Experiments
 - Experiments with Ultrasound Images
- Conclusions

Synthetic Experiments

Original Image

Clustering over median

With Speckle (Rayleigh)

Clustering over mean (9)

Clustering over speckle

Clustering over mean (5)

Synthetic Experiments

Experiments with Ultrasound Images

Experiments with Ultrasound Images

Conclusions

- Introduction
 - Speckle
 - Models for Speckle
 - Aim of the work
- 2 Local Statistics of the Rayleigh distribution
 - The Rayleigh distribution
 - Parameter estimation
- Tissue Identification in Ultrasound Images
 - Initial assumptions
 - Algorithm
- 4 Experiments
 - Synthetic Experiments
 - Experiments with Ultrasound Images
- Conclusions

Conclusions

Conclusions

- Increase separability of tissues by using local estimators.
- Make any subsequent segmentation easier.
- Clustering done with K-means, (though more complex algorithms may be used).

Future Work

- Adding spatial coherence.
- Using the information for more complex segmentation (Snakes?)
- Other distributions.
- Anisotropic estimation of the parameters.
- Logarithmic compression of the data.

Conclusions

Conclusions

- Increase separability of tissues by using local estimators.
- Make any subsequent segmentation easier.
- Clustering done with K-means, (though more complex algorithms may be used).

Future Work

- Adding spatial coherence.
- Using the information for more complex segmentation (Snakes?)
- Other distributions.
- Anisotropic estimation of the parameters.
- Logarithmic compression of the data.

Thanks for your attention