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Speckle and Ultrasound

Speckle
Speckle is a kind of granular noise,
Found in many types of coherent
imaging systems: SAR, laser
illuminated or ultrasound.

Received signal model

Z = Xejφ =
N∑

n=1

xiejφi
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Statistical Models for Speckle

Statistical models
1 Rayleigh: phases are random and independent of

the amplitudes, number of scatters large, no
periodicity in disposition of the scatters.

p(X ) =
X
σ2 e−

X2

2σ2 u(X )

2 Rician distribution (specular component Zs added).
3 K distribution
4 Homodyned K distribution.
5 Others: Nakagami model, Rician inverse Gaussian

and Nakagami inverse Gaussian.

–Logarithmic compression no considered–
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Aim of this work

Assumption
Rayleigh distribution of the speckle.
Uniform value of σ for each tissue;
different values for different tissues.

Aim
Estimation of σ in each tissue.
Classification of pixels according to σ̂.

Tools
Local Statistics
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The Rayleigh distribution

PDF

p(x |σ) =
x
σ2 e−

x2

2σ2 u(x)

�
��

Moments and parameters
Mean: E{x} = σ

√
π
2

Median: median{x} = σ
√

log(4)

Mode: mode{x} = σ

Variance: Var{x} = σ2 4−π
2

Second order moment: E{x2} = 2σ2
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Parameter estimation

Being Ri(σ
2), i = {1, · · · , N} a set of

random variables with Rayleigh distribution

Maximum Likelihood (ML) estimator

σ̂2
ML =

1
2N

N∑
i=1

R2
i =

1
2
〈R2

i 〉

Unbiased estimator

σ̂c =

√
2
π

1
N

N∑
i=1

Ri =

√
2
π
〈Ri〉
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Parameter estimation (2)

ML estimator distribution

Mean: E{σ̂2
ML} = αβ = 2σ2

Mode: mode{σ̂2
ML} = (α − 1)β = N−1

N 2σ2

Variance: Var{σ̂2
ML} = αβ2 = 4σ4

N

Unbiased estimator distribution
Mean: E {σ̂c} = σ

√
π
2

Mode: mode {σ̂c} ≈ σn

√
2(2N−1)N

e ≈ σnN
√

π
2

Variance: Var{σ̂c} = 1
N Var{R(σ)} = 1

N σ2 4−π
2

If N >> mean and the mode are approximately
equal.
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Algorithm: about the image

Assuming a Rayleigh model for the
speckle
Image model: σ2

ij = f 2
ij σ

2
n

Value of σ related to the
characteristics of the biological
tissue.
Assumption: each scanned tissue
uniform response: similar σij for
each tissue, and different for
different tissues.

Local estimation of sigma allows the
identification of different regions
belonging to different types of tissues.
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Algorithm: overview

1 Original image estimation using local
estimation and assuming Rayleigh
distribution.

2 Classifying the pixels in tissues
1 Defining the number of classes (tissues).
2 Simple classification algorithm: K-means.
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Algorithm: image estimators

Mean

Iσ̂ij =
√

2
π

1
|ηi,j |

∑
p∈ηi,j

Ip

Squared Mean (ML)

Iσ̂ij =
√

1
2|ηi,j |

∑
p∈ηi,j

I2
p

Median

Iσ̂ij =
√

1
log(4)median

p∈ηi,j
{Ip}
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Algorithm: example

Original Speckle

Average Classified 0 50 100 150 200 250 300 350 400
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Synthetic Experiments

Original Image With Speckle (Rayleigh) Clustering over speckle

Clustering over median Clustering over mean (9) Clustering over mean (5)

S. Aja-Fernández et al. (LPI) Tissue Identification 17 / 23



Synthetic Experiments
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Experiments with Ultrasound Images

Original 3D mean 2D mean

2D median 2D squared mean
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Experiments with Ultrasound Images

Original Processed
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Conclusions
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Conclusions

Conclusions
Increase separability of tissues by using local estimators.
Make any subsequent segmentation easier.
Clustering done with K-means, (though more complex algorithms
may be used).

Future Work
Adding spatial coherence.
Using the information for more complex segmentation (Snakes?)
Other distributions.
Anisotropic estimation of the parameters.
Logarithmic compression of the data.
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Thanks for your attention
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