Noise estimation and diffusion signal reconstruction: From cradle to parallel imaging

What type of noise 'infects' the data and by filtering it out are we (black) magically creating something new?

Santiago Aja-Fernández

Laboratory of Image Processing

Universidad de Valladolid

Illustrations: David Aja

Outline

- Introduction
- Signal and Noise statistical models
- Noise filtering and signal estimation
- Noise estimation
- Effects on dMRI
- Pitfalls and conclusions

Thinking about the problem

- Noise is one of the main sources of quality deterioration in magnetic resonance (MR) data.
- Is noise just a problem for "image quality" and visual inspection?
- Affecting: segmentation, registration, tensor estimation...
- In dMRI: noise and filtering may affect the estimation of direction and amount of diffusion.

- Noise is one of the main sources of quality deterioration in magnetic resonance (MR) data.
- Is noise just a problem for "image quality" and visual inspection?
- Affecting: segmentation, registration, tensor estimation...
- In dMRI: noise and filtering may affect the estimation of direction and amount of diffusion.

- Noise is one of the main sources of quality deterioration in magnetic resonance (MR) data.
- Is noise just a problem for "image quality" and visual inspection?
- Affecting: segmentation, registration, tensor estimation...
- In dMRI: noise and filtering may affect the estimation of direction and amount of diffusion.

- Noise is one of the main sources of quality deterioration in magnetic resonance (MR) data.
- Is noise just a problem for "image quality" and visual inspection?
- Affecting: segmentation, registration, tensor estimation...
- In dMRI: noise and filtering may affect the estimation of direction and amount of diffusion.

- Noise is one of the main sources of quality deterioration in magnetic resonance (MR) data.
- Is noise just a problem for "image quality" and visual inspection?
- Affecting: segmentation, registration, tensor estimation...
- In dMRI: noise and filtering may affect the estimation of direction and amount of diffusion.

MR filtering

MR filtering

We can *clean* the images... is it enough in dMRI?

Diffusion Tensor, real example

Diffusion tensor field over FA

Without filtering

LMMSE filtered

Aja-Fernández et al., Oct. 2008. Restoration of DWI data using a Rician LMMSE estimator. IEEE Trans. Med. Imaging 27 (10).

Diffusion Tensor, real example

Q-Balls imaging, real example

Q-Balls imaging, real example

Comparison: Q-Balls, DOT, OPDT

Without LMMSE-N filtering

Q-Balls imaging, real example

Comparison: Q-Balls, DOT, OPDT

With LMMSE-N filtering

- Noise is known to be one of the main sources of quality deterioration in magnetic resonance (MR) data.
- We want to get rid of that noise but preserving the underlying structures (very important in dMRI).
- Accordingly:
 - Filtering methods based on data structure and modeling of noise behavior. Bayesian and probabilistic modeling.
 - Quality assessment methods to test the goodness of proposed algorithms.
 - Estimation of parameters out of data: variance of noise estimation
 - Filtering and preprocessing: model based

- Noise is known to be one of the main sources of quality deterioration in magnetic resonance (MR) data.
- We want to get rid of that noise but preserving the underlying structures (very important in dMRI).
- Accordingly:
 - Filtering methods based on data structure and modeling of noise
 - behavior. Bayesian and probabilistic modeling
 - Quality assessment methods to test the goodness of proposed
 - algorithms.
 - Estimation of parameters out of data: variance of noise estimation
 - Filtering and preprocessing: model based.

- Noise is known to be one of the main sources of quality deterioration in magnetic resonance (MR) data.
- We want to get rid of that noise but preserving the underlying structures (very important in dMRI).
- Accordingly:

- Noise is known to be one of the main sources of quality deterioration in magnetic resonance (MR) data.
- We want to get rid of that noise but preserving the underlying structures (very important in dMRI).
- Accordingly:
 - Filtering methods based on data structure and modeling of noise behavior. Bayesian and probabilistic modeling.
 - Quality assessment methods to test the goodness of proposed algorithms.
 - Estimation of parameters out of data: variance of noise estimation
 - Filtering and preprocessing: model based.

- Noise is known to be one of the main sources of quality deterioration in magnetic resonance (MR) data.
- We want to get rid of that noise but preserving the underlying structures (very important in dMRI).
- Accordingly:
 - Filtering methods based on data structure and modeling of noise behavior. Bayesian and probabilistic modeling.
 - Quality assessment methods to test the goodness of proposed algorithms.
 - Stimation of parameters out of data: variance of noise estimation
 - Filtering and preprocessing: model based

- Noise is known to be one of the main sources of quality deterioration in magnetic resonance (MR) data.
- We want to get rid of that noise but preserving the underlying structures (very important in dMRI).
- Accordingly:
 - Filtering methods based on data structure and modeling of noise behavior. Bayesian and probabilistic modeling.
 - Quality assessment methods to test the goodness of proposed algorithms.
 - 3 Estimation of parameters out of data: variance of noise estimation
 - Filtering and preprocessing: model based

- Noise is known to be one of the main sources of quality deterioration in magnetic resonance (MR) data.
- We want to get rid of that noise but preserving the underlying structures (very important in dMRI).
- Accordingly:
 - Filtering methods based on data structure and modeling of noise behavior. Bayesian and probabilistic modeling.
 - Quality assessment methods to test the goodness of proposed algorithms.
 - 3 Estimation of parameters out of data: variance of noise estimation.
 - Filtering and preprocessing: model based

- Noise is known to be one of the main sources of quality deterioration in magnetic resonance (MR) data.
- We want to get rid of that noise but preserving the underlying structures (very important in dMRI).
- Accordingly:
 - Filtering methods based on data structure and modeling of noise behavior. Bayesian and probabilistic modeling.
 - Quality assessment methods to test the goodness of proposed algorithms.
 - 3 Estimation of parameters out of data: variance of noise estimation.
 - Filtering and preprocessing: model based.

- Noise is known to be one of the main sources of quality deterioration in magnetic resonance (MR) data.
- We want to get rid of that noise but preserving the underlying structures (very important in dMRI).
- Accordingly:
 - Filtering methods based on data structure and modeling of noise behavior. Bayesian and probabilistic modeling.
 - Quality assessment methods to test the goodness of proposed algorithms.
 - Stimation of parameters out of data: variance of noise estimation.
 - Filtering and preprocessing: model based.

We are not *inventing* data or *cleaning* an image; we are estimating a signal out of noisy data. Ideally: we are recovering the most likely or possible signal based on the data we have.

Outline

- Introduction
- Signal and Noise statistical models
- Noise filtering and signal estimation
- 4 Noise estimation
- Effects on dMRI
- 6 Pitfalls and conclusions

Outline

- Introduction
- Signal and Noise statistical models
- Noise filtering and signal estimation
- 4 Noise estimation
- Effects on dMRI
- 6 Pitfalls and conclusions

k-space

- Complex Gaussian noise
- Uncorrelated
- Stationary

x-space

- Complex Gaussian noise.
- Uncorrelated?
- Stationary

- Magnitude of complex Gaussian: Rician.
- Uncorrelated?
- Stationary

k-space

- Complex Gaussian noise
- Uncorrelated
- Stationary

x-space

- Complex Gaussian noise.
- Uncorrelated?
- Stationary

- Magnitude of complex Gaussian: Rician.
- Uncorrelated?
- Stationary

k-space

- Complex Gaussian noise
- Uncorrelated
- Stationary

x-space

- Complex Gaussian noise.
- Uncorrelated?
- Stationary

- Magnitude of complexGaussian:Rician.
- Uncorrelated?
- Stationary

k-space

- Complex Gaussian noise
- Uncorrelated
- Stationary

x-space

- Complex Gaussian noise.
- Uncorrelated?
- Stationary

- Magnitude of complex Gaussian: Rician.
- Uncorrelated?
- Stationary

Areas in the image

Signal and noise statistical models in MR

Before Magnitude		
k -space	Complex Gaussian	
x -space	Complex Gaussian	

Composite Magnitude Image					
Number of coils	Acquisition	Statistical Model	Stat. model of the		
000			background		
1 coil	Single coil	Rician	Rayleigh		
		(Stationary)			
Multiple coils	No subsampling+ SoS	Non-central Chi	Central Chi		
·		(Stationary)			
Multiple coils	pMRI+ SENSE	Rician	Rayleigh		
		(Non-Stationary)			
Multiple coils	pMRI+ GRAPPA+ SoS	Non-central Chi	Central Chi		
·	·	(Non-Stationary,			
		effective parame-			
		ters)			
		,			

Signal and noise statistical models in MR

Before Magnitude		
k -space	Complex Gaussian	
x -space	Complex Gaussian	

Composite Magnitude Image					
Number of coils	Acquisition	Statistical Model	Stat. model of the background		
1 coil	Single coil	Rician (Stationary)	Rayleigh		
Multiple coils	No subsampling+ SoS	Non-central Chi (Stationary)	Central Chi		
Multiple coils	pMRI+ SENSE	Rician (Non-Stationary)	Rayleigh		
Multiple coils	pMRI+ GRAPPA+ SoS	Non-central Chi (Non-Stationary, effective parame- ters)	Central Chi		

For high SNR: always possible to use Gaussian assumption.

Stationarity (brief, quick and intuitive)

Variance of noise

- Stationary: same σ_n^2 value for every pixel.
- Non-Stationary: σ_n^2 varies along the image.

Too many abstract concepts...

Too many abstract concepts...

Let's go back to earth!

Outline

- Introduction
- Signal and Noise statistical models
- Noise filtering and signal estimation
- Noise estimation
- Effects on dMRI
- Pitfalls and conclusions

- Purpose: eliminate the noise in MR data without destroying any signal information.
- Basically: we want to improve the SNR of our data
- In dMRI special attention to noise models: filtering may introduce bias.
- Trade off between denoising and structure keeping
- REMEMBER: We are not inventing data or cleaning an image; we are estimating a signal out of noisy data. Ideally: we are recovering the most likely or possible signal based on the data we have.

- Purpose: eliminate the noise in MR data without destroying any signal information.
- Basically: we want to improve the SNR of our data
- In dMRI special attention to noise models: filtering may introduce bias.
- Trade off between denoising and structure keeping
- REMEMBER: We are not inventing data or cleaning an image; we are estimating a signal out of noisy data. Ideally: we are recovering the most likely or possible signal based on the data we have.

- Purpose: eliminate the noise in MR data without destroying any signal information.
- Basically: we want to improve the SNR of our data
- In dMRI special attention to noise models: filtering may introduce bias.
- Trade off between denoising and structure keeping
- REMEMBER: We are not inventing data or cleaning an image; we are estimating a signal out of noisy data. Ideally: we are recovering the most likely or possible signal based on the data we have.

- Purpose: eliminate the noise in MR data without destroying any signal information.
- Basically: we want to improve the SNR of our data
- In dMRI special attention to noise models: filtering may introduce bias.
- Trade off between denoising and structure keeping
- REMEMBER: We are not inventing data or cleaning an image; we are
 estimating a signal out of noisy data. Ideally: we are recovering the most
 likely or possible signal based on the data we have.

- Purpose: eliminate the noise in MR data without destroying any signal information.
- Basically: we want to improve the SNR of our data
- In dMRI special attention to noise models: filtering may introduce bias.
- Trade off between denoising and structure keeping
- REMEMBER: We are not inventing data or cleaning an image; we are
 estimating a signal out of noisy data. Ideally: we are recovering the most
 likely or possible signal based on the data we have.

- Purpose: eliminate the noise in MR data without destroying any signal information.
- Basically: we want to improve the SNR of our data
- In dMRI special attention to noise models: filtering may introduce bias.
- Trade off between denoising and structure keeping
- REMEMBER: We are not inventing data or cleaning an image; we are
 estimating a signal out of noisy data. Ideally: we are recovering the most
 likely or possible signal based on the data we have.

- Anisotropic Diffusion Schemes: [Perona90], [Gerig92], [Weickert98] (semi-implicit scheme), [Krissian09] (Rician adapted, no Bias)
- Rician Based: [Mcgibney93] (Conventional Approach), [basu2006], [Koay06]
- Bayesian Framework: [Marzetta95] (Expectation–Maximization, EM estimation of Rician signal) [Sijbers98], [Sijbers98c], [Sijbers04] (maximum likelihood, ML, signal estimation), [AjaIP08], [AjaTMI08], [AjaMiccai07], [TristanMiccai08], [Martinfernandez2007] (Linear Minimum Mean Squared Error, LMMSE, signal estimation).
- Nonlocal statistics: [Buades05], [Coupe08] (Nonlocal means, NLM), [Manjon08], [AjaMiccai08], [Wiest08] (NLM with Rician correction).
- Other methods: [Awate05] (Nonparametric Neighborhood Statistics), [Nowak99], [Pizurica03] (Wavelets).
- Filtering using all the DWIs information: [TristanMiccai08], [TristanFiltrado09 (LMMSE and NLM taking into account information of all DWIs).

- Anisotropic Diffusion Schemes: [Perona90], [Gerig92], [Weickert98] (semi-implicit scheme), [Krissian09] (Rician adapted, no Bias)
- Rician Based: [Mcgibney93] (Conventional Approach), [basu2006], [Koay06]
- Bayesian Framework: [Marzetta95] (Expectation–Maximization, EM estimation of Rician signal) [Sijbers98], [Sijbers98c], [Sijbers04] (maximum likelihood, ML, signal estimation), [AjalP08], [AjaTM108], [AjaMiccai07], [TristanMiccai08], [Martinfernandez2007] (Linear Minimum Mean Squared Error, LMMSE, signal estimation).
- Nonlocal statistics: [Buades05], [Coupe08] (Nonlocal means, NLM), [Manjon08], [AjaMiccai08], [Wiest08] (NLM with Rician correction).
- Other methods: [Awate05] (Nonparametric Neighborhood Statistics), [Nowak99], [Pizurica03] (Wavelets).
- Filtering using all the DWIs information: [TristanMiccai08], [TristanFiltrado09] (LMMSE and NLM taking into account information of all DWIs).

- Anisotropic Diffusion Schemes: [Perona90], [Gerig92], [Weickert98] (semi-implicit scheme), [Krissian09] (Rician adapted, no Bias)
- Rician Based: [Mcgibney93] (Conventional Approach), [basu2006], [Koay06]
- Bayesian Framework: [Marzetta95] (Expectation–Maximization, EM estimation of Rician signal) [Sijbers98], [Sijbers98c], [Sijbers04] (maximum likelihood, ML, signal estimation), [AjaIP08], [AjaTMI08], [AjaMiccai07], [TristanMiccai08], [Martinfernandez2007] (Linear Minimum Mean Squared Error, LMMSE, signal estimation).
- Nonlocal statistics: [Buades05], [Coupe08] (Nonlocal means, NLM), [Manjon08], [AjaMiccai08], [Wiest08] (NLM with Rician correction).
- Other methods: [Awate05] (Nonparametric Neighborhood Statistics), [Nowak99], [Pizurica03] (Wavelets).
- Filtering using all the DWIs information: [TristanMiccai08], [TristanFiltrado09] (LMMSE and NLM taking into account information of all DWIs).

- Anisotropic Diffusion Schemes: [Perona90], [Gerig92], [Weickert98] (semi-implicit scheme), [Krissian09] (Rician adapted, no Bias)
- Rician Based: [Mcgibney93] (Conventional Approach), [basu2006], [Koay06]
- Bayesian Framework: [Marzetta95] (Expectation–Maximization, EM estimation of Rician signal) [Sijbers98], [Sijbers98c], [Sijbers04] (maximum likelihood, ML, signal estimation), [AjalP08], [AjaTMI08], [AjaMiccai07], [TristanMiccai08], [Martinfernandez2007] (Linear Minimum Mean Squared Error, LMMSE, signal estimation).
- Nonlocal statistics: [Buades05], [Coupe08] (Nonlocal means, NLM), [Manjon08], [AjaMiccai08], [Wiest08] (NLM with Rician correction).
- Other methods: [Awate05] (Nonparametric Neighborhood Statistics), [Nowak99], [Pizurica03] (Wavelets).
- Filtering using all the DWIs information: [TristanMiccai08], [TristanFiltrado09] (LMMSE and NLM taking into account information of all DWIs).

- Anisotropic Diffusion Schemes: [Perona90], [Gerig92], [Weickert98] (semi-implicit scheme), [Krissian09] (Rician adapted, no Bias)
- Rician Based: [Mcgibney93] (Conventional Approach), [basu2006], [Koay06]
- Bayesian Framework: [Marzetta95] (Expectation–Maximization, EM estimation of Rician signal) [Sijbers98], [Sijbers98c], [Sijbers04] (maximum likelihood, ML, signal estimation), [AjaIP08], [AjaTMI08], [AjaMiccai07], [TristanMiccai08], [Martinfernandez2007] (Linear Minimum Mean Squared Error, LMMSE, signal estimation).
- Nonlocal statistics: [Buades05], [Coupe08] (Nonlocal means, NLM), [Manjon08], [AjaMiccai08], [Wiest08] (NLM with Rician correction).
- Other methods: [Awate05] (Nonparametric Neighborhood Statistics), [Nowak99], [Pizurica03] (Wavelets).
- Filtering using all the DWIs information: [TristanMiccai08], [TristanFiltrado09] (LMMSE and NLM taking into account information of all DWIs).

- Anisotropic Diffusion Schemes: [Perona90], [Gerig92], [Weickert98] (semi-implicit scheme), [Krissian09] (Rician adapted, no Bias)
- Rician Based: [Mcgibney93] (Conventional Approach), [basu2006], [Koay06]
- Bayesian Framework: [Marzetta95] (Expectation–Maximization, EM estimation of Rician signal) [Sijbers98], [Sijbers98c], [Sijbers04] (maximum likelihood, ML, signal estimation), [AjaIP08], [AjaTMI08], [AjaMiccai07], [TristanMiccai08], [Martinfernandez2007] (Linear Minimum Mean Squared Error, LMMSE, signal estimation).
- Nonlocal statistics: [Buades05], [Coupe08] (Nonlocal means, NLM), [Manjon08], [AjaMiccai08], [Wiest08] (NLM with Rician correction).
- Other methods: [Awate05] (Nonparametric Neighborhood Statistics), [Nowak99], [Pizurica03] (Wavelets).
- Filtering using all the DWIs information: [TristanMiccai08], [TristanFiltrado09] (LMMSE and NLM taking into account information of all DWIs).

	Method	Comments	Quality	Time
No model	Anisotropic Diffusion Averaging NLM	Biased Biased, smooth Biased	*** * ***	*** * ***
Rician	Conventional Approach LMMSE UNLM ORNR-AD	Smooth Simple Bias corrected Bias corrected	** *** ***	* * *** ***
DWI	LMMSE-N UNLM-N	Multiple DWI Multiple DWI	****	**

Alternative: filtering in the complex domain (scanner) using Gaussian model.

	Method	Comments	Quality	Time
No model	Anisotropic Diffusion Averaging NLM	Biased Biased, smooth Biased	*** * ***	***
Rician	Conventional Approach LMMSE UNLM ORNR-AD	Smooth Simple Bias corrected Bias corrected	** *** ***	* * *** ***
DWI	LMMSE-N UNLM-N	Multiple DWI Multiple DWI	****	**

Alternative: filtering in the complex domain (scanner) using Gaussian model.

Example: LMMSE Signal estimation

Signal estimation: the LMMSE estimator

LMSSE estimator:

$$\hat{\theta} = E\{\theta\} + \mathbf{C}_{\theta \mathbf{x}} \mathbf{C}_{\mathbf{x}\mathbf{x}}^{-1} (\mathbf{x} - E\{\mathbf{x}\})$$

Rewriting for a 2D signal with a Rician distribution

$$\widehat{A_{ij}^2} = E\{A_{ij}^2\} + \mathbf{C}_{A_{ij}^2M_{ij}^2}\mathbf{C}_{M_{ij}^2M_{ij}^2}^{-1}\left(\mathbf{M}_{ij}^2 - E\{\mathbf{M}_{ij}^2\}\right)$$

From here the estimator becomes:

$$\widehat{A^2(\mathbf{x})} = \langle M(\mathbf{x})^2 \rangle - 2\sigma_n^2 + K(\mathbf{x}) \left(M^2(\mathbf{x}) - \langle M(\mathbf{x})^2 \rangle \right),$$

with

$$K(\mathbf{x}) = 1 - \frac{4\sigma_n^2 \left(\langle M(\mathbf{x})^2 \rangle - \sigma_n^2 \right)}{\langle M(\mathbf{x})^4 \rangle - \langle M(\mathbf{x})^2 \rangle^2}.$$

Examples: quality measures

Examples: color by orientation

Outline

- Introduction
- Signal and Noise statistical models
- Noise filtering and signal estimation
- 4 Noise estimation
- Effects on dMRI
- Pitfalls and conclusions

- Many filtering methods require an estimation of σ_n^2 (variance of noise).
- Variance of noise can be measure of quality in the data.
- Not only for filtering: Tensor estimation, segmentation methods based on the Rician distribution and fiber orientation estimators.

- Many filtering methods require an estimation of σ_n^2 (variance of noise).
- Variance of noise can be measure of quality in the data.
- Not only for filtering: Tensor estimation, segmentation methods based on the Rician distribution and fiber orientation estimators.

- Many filtering methods require an estimation of σ_n^2 (variance of noise).
- Variance of noise can be measure of quality in the data.
- Not only for filtering: Tensor estimation, segmentation methods based on the Rician distribution and fiber orientation estimators.

- Many filtering methods require an estimation of σ_n^2 (variance of noise).
- Variance of noise can be measure of quality in the data.
- Not only for filtering: Tensor estimation, segmentation methods based on the Rician distribution and fiber orientation estimators.

What do we want to estimate?

Rician distribution:

$$p_M(M|A,\sigma_n) = \frac{M}{\sigma_n^2} \ e^{-\frac{M^2+A^2}{2\sigma_n^2}} \ I_0\left(\frac{AM}{\sigma_n^2}\right) \ u(M),$$

Rayleigh distribution

$$p_M(M|\sigma_n) = \frac{M}{\sigma_n^2} e^{-\frac{M^2}{2\sigma_n^2}} u(M).$$

We want to estimate σ_n^2 , the variance of noise in the complex **x**-space:

$$C(\mathbf{x}) = A(\mathbf{x}) + N(\mathbf{x}; \sigma_n^2)$$

with

$$N(\mathbf{x}, \sigma_n^2) = N_r(\mathbf{x}; \sigma_n^2) + j \cdot N_i(\mathbf{x}; \sigma_n^2)$$

- We define an estimator: usually related to statistics of the image.
- E.g.: Mean of the (Rayleigh) background

$$\mathsf{E}\{r\} = \sigma\sqrt{\frac{\pi}{2}}$$

So we can define

$$\sigma = \sqrt{\frac{2}{\pi}} \mathsf{E}\{r\} \ \rightarrow \ \widehat{\sigma_n} = \sqrt{\frac{2}{\pi}} \langle M(\mathbf{x_B}) \rangle$$

 Disadvantages: need of background segmentation; assumption of uniform background; sensitive to errors and artifacts

- We define an estimator: usually related to statistics of the image.
- E.g.: Mean of the (Rayleigh) background

$$\mathsf{E}\{r\} = \sigma\sqrt{\frac{\pi}{2}}$$

So we can define

$$\sigma = \sqrt{\frac{2}{\pi}} \mathsf{E}\{r\} \ o \ \widehat{\sigma_n} = \sqrt{\frac{2}{\pi}} \langle M(\mathbf{x_B}) \rangle$$

 Disadvantages: need of background segmentation; assumption of uniform background; sensitive to errors and artifact

- We define an estimator: usually related to statistics of the image.
- E.g.: Mean of the (Rayleigh) background

$$\mathsf{E}\{r\} = \sigma\sqrt{\frac{\pi}{2}}$$

So we can define

$$\sigma = \sqrt{\frac{2}{\pi}} \mathsf{E}\{r\} \ o \ \widehat{\sigma_n} = \sqrt{\frac{2}{\pi}} \langle M(\mathbf{x_B}) \rangle$$

 Disadvantages: need of background segmentation; assumption of uniform background; sensitive to errors and artifacts.

(b) Sample mean

- Using the mode of some distribution (most probable value).
- Distribution of sample second order moment of Rayleigh data: Gamma distribution

$$S = \frac{1}{N} \sum_{i=1}^{N} R_i^2(\sigma^2) \sim \gamma \left(N, \frac{2\sigma^2}{N} \right)$$

with maximum in $(N-1)/N \cdot 2\sigma_n^2$.

O So:

$$\widehat{\sigma_n^2} = \frac{N}{N-1} \cdot \frac{1}{2} \text{mode}\{\langle M^2(\mathbf{x}) \rangle\} \approx \frac{1}{2} \text{mode}\{\langle M^2(\mathbf{x}) \rangle\}$$

- Advantages: robust, not need of segmentation
- Disadvantages: problems to calculate the mode, artificial backgrounds.

(b) Sample mean

- Using the mode of some distribution (most probable value).
- Distribution of sample second order moment of Rayleigh data: Gamma distribution

$$S = \frac{1}{N} \sum_{i=1}^{N} R_i^2(\sigma^2) \sim \gamma \left(N, \frac{2\sigma^2}{N}\right)$$

with maximum in $(N-1)/N \cdot 2\sigma_n^2$.

So:

$$\widehat{\sigma_n^2} = \frac{N}{N-1} \cdot \frac{1}{2} \text{mode}\{\langle M^2(\mathbf{x}) \rangle\} \approx \frac{1}{2} \text{mode}\{\langle M^2(\mathbf{x}) \rangle\}$$

- Advantages: robust, not need of segmentation
- Disadvantages: problems to calculate the mode, artificial backgrounds.

(b) Sample mean

- Using the mode of some distribution (most probable value).
- Distribution of sample second order moment of Rayleigh data: Gamma distribution

$$S = \frac{1}{N} \sum_{i=1}^{N} R_i^2(\sigma^2) \sim \gamma \left(N, \frac{2\sigma^2}{N}\right)$$

with maximum in $(N-1)/N \cdot 2\sigma_n^2$.

O So:

$$\widehat{\sigma_n^2} = \frac{N}{N-1} \cdot \frac{1}{2} \text{mode}\{\langle \textit{M}^2(\textbf{x}) \rangle\} \approx \frac{1}{2} \text{mode}\{\langle \textit{M}^2(\textbf{x}) \rangle\}$$

- Advantages: robust, not need of segmentation
- Disadvantages: problems to calculate the mode, artificial backgrounds.

(b) Sample mean

- Using the mode of some distribution (most probable value).
- Distribution of sample second order moment of Rayleigh data: Gamma distribution

$$S = \frac{1}{N} \sum_{i=1}^{N} R_i^2(\sigma^2) \sim \gamma \left(N, \frac{2\sigma^2}{N} \right)$$

with maximum in $(N-1)/N \cdot 2\sigma_n^2$.

O So:

$$\widehat{\sigma_n^2} = \frac{N}{N-1} \cdot \frac{1}{2} \text{mode}\{\langle \textit{M}^2(\textbf{x}) \rangle\} \approx \frac{1}{2} \text{mode}\{\langle \textit{M}^2(\textbf{x}) \rangle\}$$

- Advantages: robust, not need of segmentation
- Disadvantages: problems to calculate the mode, artificial backgrounds.

Estimators: an overview

- Methods estimating from global statistic of segmented background or selected area of the background. (Rayleigh assumption)
- Methods using the mode of the distribution of a local statistic. Robust and fast, no segmentation needed. (Rayleigh assumption)
- Methods matching a known distribution to a sample distribution (EM, ML, maximization or certain parameter...). Robust, but recursive estimation.
- Methods based on wavelets: most of them are implicitly assuming a Gaussian distribution.
- Alternatively: estimating noise in the complex domain.

Estimators: an overview

- Methods estimating from global statistic of segmented background or selected area of the background. (Rayleigh assumption)
- Methods using the mode of the distribution of a local statistic. Robust and fast, no segmentation needed. (Rayleigh assumption)
- Methods matching a known distribution to a sample distribution (EM, ML, maximization or certain parameter...). Robust, but recursive estimation.
- Methods based on wavelets: most of them are implicitly assuming a Gaussian distribution.
- Alternatively: estimating noise in the complex domain.

- Methods estimating from global statistic of segmented background or selected area of the background. (Rayleigh assumption)
- Methods using the mode of the distribution of a local statistic. Robust and fast, no segmentation needed. (Rayleigh assumption)
- Methods matching a known distribution to a sample distribution (EM, ML, maximization or certain parameter...). Robust, but recursive estimation.
- Methods based on wavelets: most of them are implicitly assuming a Gaussian distribution.
- Alternatively: estimating noise in the complex domain

- Methods estimating from global statistic of segmented background or selected area of the background. (Rayleigh assumption)
- Methods using the mode of the distribution of a local statistic. Robust and fast, no segmentation needed. (Rayleigh assumption)
- Methods matching a known distribution to a sample distribution (EM, ML, maximization or certain parameter...). Robust, but recursive estimation.
- Methods based on wavelets: most of them are implicitly assuming a Gaussian distribution.
- Alternatively: estimating noise in the complex domain

- Methods estimating from global statistic of segmented background or selected area of the background. (Rayleigh assumption)
- Methods using the mode of the distribution of a local statistic. Robust and fast, no segmentation needed. (Rayleigh assumption)
- Methods matching a known distribution to a sample distribution (EM, ML, maximization or certain parameter...). Robust, but recursive estimation.
- Methods based on wavelets: most of them are implicitly assuming a Gaussian distribution.
- Alternatively: estimating noise in the complex domain

- Methods estimating from global statistic of segmented background or selected area of the background. (Rayleigh assumption)
- Methods using the mode of the distribution of a local statistic. Robust and fast, no segmentation needed. (Rayleigh assumption)
- Methods matching a known distribution to a sample distribution (EM, ML, maximization or certain parameter...). Robust, but recursive estimation.
- Methods based on wavelets: most of them are implicitly assuming a Gaussian distribution.
- Alternatively: estimating noise in the complex domain.

Outline

- Introduction
- Signal and Noise statistical models
- Noise filtering and signal estimation
- Noise estimation
- 5 Effects on dMRI
- Pitfalls and conclusions

Tensor fitting based on Weighted Least Squares

Estimation error for a simplified scenario [Tristan09]

The error (MSE) for multiple-coil is defined as

$$\mathsf{MSE} \simeq \underbrace{\left[\frac{\mathcal{K}_1}{N}\left(\frac{1}{\mathsf{SNR}^2} - \frac{1}{\mathsf{SNR}^4}(3L - 4)\right)\right]}_{\mathsf{Var}(\mathsf{estimation})} + \underbrace{\left[\frac{1}{\mathsf{SNR}^4}3(L - 1)^2\right]}_{\mathsf{bias}^2(\mathsf{estimation})}$$

Synthetic experiments

Estimation tensor: Synthetic experiments

Estimation tensor: Synthetic experiments

Realistic DWI phantom

A realistic DWI phantom is used, [Tristan09b]. A $256 \times 256 \times 81$ volume, spatial resolution of 1mm \times 1.7mm, 15 gradient directions and 1 baseline.

[Tristan09b] A. Tristán-Vega and S. Aja-Fernández, "Design and construction of a realistic DWI phantom for filtering performance assessment," in *MICCAI 2009*, 2009.

Realistic DWI phantom

rMSE of the tensor estimation for (Left) different σ_n values (and 5 gradients); (Right) different number of gradients (and $\sigma_n = 10$)

$$\mathsf{rMSE}(x) = \frac{\sqrt{(\widehat{\lambda_1}(x) - \lambda_1(x))^2 + (\widehat{\lambda_2}(x) - \lambda_2(x))^2 + (\widehat{\lambda_3}(x) - \lambda_3(x))^2}}{\lambda_1(x)}$$

Realistic DWI phantom

Fractional Anisotropy. From left to right: Original non-noisy data; Rician case; pMRI-SoS case; SENSE case; GRAPPA case. Top row $\sigma_n = 10$ (average SNR in gray matter in the gradient images 40). Low row: $\sigma_n = 35$ (average SNR in gray matter in the gradient images 11.4).

Outline

- Introduction
- Signal and Noise statistical models
- Noise filtering and signal estimation
- 4 Noise estimation
- Effects on dMRI
- Pitfalls and conclusions

Pitfalls and conclusions

Pitfalls

- Acquisition: reduced k-space and EPI introduces non-linearity that make the signal differs from model.
- Correlations must be taking into account.
- Parallel acquisition: Non-stationary model. Is noise estimation possible? Has it any meaning?

Conclusions

- Noise affects not only the visual quality but the estimation of diffusion parameters.
- Knowing the underlying noise model helps to better filtering.
- Proper noise estimation improves signal estimation (and noise filtering).
- Better to filter BEFORE estimation.

References: 3 papers to start

- Aja-Fernández, S., Tristán-Vega, A., Alberola-López, C., 2009.
 Noise estimation in single and multiple coil MR data based on statistical models. Magn. Reson. Imag. 27, 1397–1409.
- Tristán-Vega, A., Aja-Fernández, S., 2010. DWI filtering using joint information for DTI and HARDI. Med. Imag. Anal. 14 (2), 205 – 218.
- Aja-Fernández, S., Tristán-Vega, A., de-la Higuera, P. C., 2010.
 DWI acquisition schemes and diffusion tensor estimation: A simulation—based study. In: Proc. of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'2010). Buenos Aires, Argentina.

Thanks for you attention!

Noise estimation and diffusion signal reconstruction: From cradle to parallel imaging

What type of noise 'infects' the data and by filtering it out are we (black) magically creating something new?

Santiago Aja-Fernández

Laboratory of Image Processing

Universidad de Valladolid

Illustrations: David Aja